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tract

oelectric materials are widely used in energy applications due to their field-driven multiferroic properties.

stress-induced phase transformation plays an important role in the functionality over repeated and

ecutive operation cycles, especially at the micro/nanoscales. Here we report a systematic in-situ uniaxial

pression tests on cuboidal Barium titanate (BaTiO3) nanopillars with size varying from 100 nm to 3000

by which we explore the stress-induced transformation and its interplay with plastic deformation.

confirm the superelasticity achieved in pillars by martensitic phase transformation from tetragonal to

orhombic. There exists a critical size, 330nm, for the yield stress. Above 330nm, martensitic phase

sformation aids slip along the plane with a low Schmid factor, in turn, the pseudo-compatible twins

within the shear band. The scaling exponent of size-dependent yield strength is found to be exactly 1.

nanopillars smaller than 330nm, no twins form, only slips with large Schmid factors are activated, and

effect vanishes. All pillars with sizes from 100nm to 300nm achieve the theoretical yield limit around

a. Our experimental results uncover the interplay between twins and slips in BaTiO3 nanopillars, which

the way for the optimization of microstructure design of ferroelectric materials for microelectronic

ications at small scales.

words: Twinning, Slip, Size effect, Phase-transforming ferroelectrics, In situ nanomechanical test

ntroduction

erroelectric materials provide profound potentials in energy applications [1] such as piezoelectric energy

esting [2], electrocaloric cooling [3], and pyroelectric energy generators [4, 5]. The performance of

e devices relies on the field-driven multiferroic properties, which are sensitive to the symmetries and

ce parameters of the ferroelectric crystals. Barium titanate is a typical phase transforming ferroelectric

erial with a wide range of applications to electronic devices. Above the Curie temperature (i.e. around

orresponding author
mail address: xianchen@ust.hk (Xian Chen)

rint submitted to Journal of the Mechanics and Physics of Solids June 29, 2024



Journal Pre-proof

120◦

orth

occu

the

play

the

beha

and

T

com

BaT

desp

by T

equi

pilla

on t

are

the

appl

than

is n

of tr

tran

F

lead

Con

poly

relat

redu

24]

cons

often

expe

hard

law
 Jo
ur

na
l P

re
-p

ro
of

C), it possesses a cubic perovskite structure, which transforms to a ferroelectric tetragonal phase, then to

orhombic at 5◦C finally to rhombohedral phase at −80◦C. [6] When the structural phase transformation

rs in the crystal, the ferroic properties of the material undergo an abrupt change, which strongly enhance

energy conversion performance. Regard the device design, the stress-induced phase transformation

s an important role in the functionality over repeated and consecutive operation cycles, especially at

micro/nanoscales [7]. While many studies discuss the effect of mechanical stress on elastic and plastic

viors [8, 9] and domain switching [10], the stress-induced transformation and interplay between twins

slips are rarely investigated in ferroelectric oxides.

he ferroelectric oxides are generally brittle [11, 12]. Unlike metals, ferroelectric oxides rarely exhibit

mon slip systems such as (111)[11̄0] for face-centered cubic and (110)[11̄1] for body-centered cubic. In

iO3, an easy glide system (110)[11̄0] were observed by micro/nanoindentation experiments [13, 14, 15],

ite statistically stored dislocations primarily having the Burgers vector along [100] direction, as observed

EM [16, 17]. In some micromechanical experiments, the slip system (110)[11̄0] and its crystallographic

valencies [12, 18] were activated corresponding to the maximum Schmid factor (i.e. 0.5) under uniaxial

r compression along [001] orientation. When the loading direction does not favor slip along [11̄0]

he (110) plane, other slip systems can be activated at different shear stress levels. However, there

no experiments to support the existences of other slip systems in Barium titanates. In some cases,

compression experiments on [001]-oriented single crystal BaTiO3 exhibit superelasticity under 50 MPa

ied stress [19, 18]. These works claim that the superelasticity was achieved by domain switching rather

phase transition, but accurate experimental justification with quantitative microstructure analysis

ot verified under a general orientation away from the easy axis. The crystallographic calculations

ansformation strain were not performed to examine whether the superelasticity is due to the phase

sformation or the domain switching.

or phase transforming ferroelectric materials, formation of twins and activation of dislocation slips may

to a complicated deformation mode, consequently, causing new mechanical scaling law at nanoscales.

ventionally, phenomenological analysis concluded that the material gets stronger as the size reduces. In

crystalline solids, this is interpreted as the Hall-Petch relation [20, 21] that the flow stress is inversely

ed to the grain size. From continuum mechanics point of view, the yield stress scales up with the

ction of sample size through a power law. The high-order models of strain-gradient plasticity [22, 23,

predict that the scaling exponent is equal to 1 by direct minimization of the free energy functional

idering uniform strain gradient with a simple shear. However, conventional strain-gradient models

over predicted the exponent α from experimental values, specially in the micro to nanomechanical

rimental regime [25, 26, 27, 28]. As the ferroelectric oxides are rigid and brittle, the strain gradient

ening model may predict them more accurately than metals. It is interesting to investigate the scaling

of yield strength for phase-transforming ferroelectrics at small scales.
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n this paper, we conduct systematic in-situ uniaxial compression tests on cuboidal BaTiO3 nanopillars

size varying from 100 nm to 3000 nm, to explore the stress-induced transformation and its interplay

plastic deformation. We investigate the scaling law for bulk and miniature pillars and discover a

cal size. Above the critical size, martensitic phase transformation fabricates slip along the plane with

Schmid factor. Below the critical size, no twins form, and only slips with large Schmid factors are

ated. The microstructure of the post-deformed specimen is carefully analyzed by crystallographic theory

artensite. We also precisely measure the strength dependent scaling behaviors under two deformation

es corresponding to the microstructure observation of fracture mechanisms.

nalysis of twins and slips in BaTiO3 under uniaxial loading

ince the discovery of Barium titanate (BaTiO3), its crystal structures have been thoroughly character-

at temperatures from -80◦C to 200◦C by X-ray and neutron diffraction experiments [29, 30, 6]. Here

ocus on the formation of twins from tetragonal phase (P4mm) to orthorhombic phase (Amm2). The

metry-breaking phase transformation results in two symmetry-related martensitic variants, represented

he transformation stretch tensors U1 and U2. During the phase transformation, the (010)t plane and

]t, [1̄01]t directions of tetragonal lattice transform to the (100)o plane and [010]o, [001]o directions of

orhombic lattice. The lattice correspondence is indicated in Figure 1(a) and (b). The stretch tensors

be explicitly calculated in terms of lattice parameters as

U2
1 =




b2o+c2o
4a2

t
0

b2o−c2o
4atct

0
a2
o

a2
t

0

b2o−c2o
4atct

0
b2o+c2o
4c2t


 , U

2
2 =




b2o+c2o
4a2

t
0

c2o−b2o
4atct

0
a2
o

a2
t

0

c2o−b2o
4atct

0
b2o+c2o
4c2t


 . (1)

lattice parameters were reported as at = 3.997Å, ct = 4.0314Å for tetragonal, and ao = 3.9874Å,

5.6751Å, co = 5.6901Å for orthorhombic by Kwei et al. [6]. Figure 1 elaborates the transformation

anism from tetragonal lattice to orthorhombic lattice. By substituting the lattice parameters, we

late the eigenvalues of the stretch tensor in (1), as

(λ1, λ2, λ3) = (0.9965, 0.9976, 1.0055).

middle eigenvalue λ2 ̸= 1 suggests that the single orthorhombic variant can not grow directly from the

gonal lattice through a compatible interface. Twins must form in orthorhombic phase to accommodate

incompatibility. The orthorhombic lattices that are deformed by two variants U1 and U2, in Figure

, exhibit a mirror relation crossing the twinning plane (001̄)t||(011)o. According to the crystallographic

ry of martensite, there must exist a conjugate twin with a mirror plane (100)t. The twins with mirror

es (001̄)t and (100)t are compound twins. During martensitic transformation, either twin can form

d on compatibility conditions [31].

3
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esides twins, the low index planes such as (100)t, (11̄0)t and (111̄)t shown in Figure 1 (c) are possible

planes for the stretched perovskite BaTiO3 lattice. Within an atomic stacking period, the areal packing

r can be defined as

ρhkl =
area of all ions in (hkl) plane

area of (hkl) plane
. (2)

s illustrated in Figure 1 (c), direct calculation by (2) gives ρ(11̄0)t = 0.77, ρ(111̄)t = 0.74, and ρ(100)t =

. Although stretching along ct-axis may slightly distort the lattice from normal perovskite structure,

family of {110} corresponds to the closest packed planes in tetragonal BaTiO3. The second closest

ed plane is (111̄)t, with slightly smaller areal packing factor. We speculate that slips can be activated

oth (11̄0)t and (111̄)t planes depending on the loading conditions. In Figure 1(c), we plot the slip

ems by depicting the slip directions associated with least shearing distances. Among them, (11̄0)t[110]t,

)t[001]t, (11̄0)t[111̄]t, (111̄)t[11̄0]t are the feasible slip systems for tetragonal BaTiO3, while (100)t[010]t

rd to be activated. Many experiments have shown that the slip system (11̄0)t[110]t got activated during

xial loading along [001]t direction in single crystal BaTiO3 [13, 14, 15]. But the activation of other slip

ems has not been reported yet.

10
0 t

00
$1 t

Twinning plane 
00$1 t|| 011 o

Variant 1

Variant 2

010 o

001 o

(a) 𝑃4𝑚𝑚 010 t projection

(b) 𝐴𝑚𝑚2 100 o projection

11$1 [1$10]

1$10 [11$1]

(c) 𝑃4𝑚𝑚 slip systems

100 [010]

1$10 [110]
1$10 [001]

e 1: BaTiO3 crystal structures for tetragonal to orthorhombic symmetries before and after martensitic phase transforma-

(a) Tetragonal lattice on (010)t plane corresponding to (b) two orthorhombic variants on (100)o plane twinned through

o plane. (c) Possible slip systems in BaTiO3 tetragonal lattice on planes (11̄0), (111̄) and (100) written in terms of cubic

.
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n situ nanomechanical experiment and result

n this section, we investigate the twin formation and slip activation in single-crystal BaTiO3 nanopillars.

out loss of generality, the nanopillars are fabricated along a direction that deviates from the ferroelectric

axis.

he BaTiO3 used in this study is a bulk polycrystalline material, synthesized using the conventional

-state reaction method [32]. To facilitate nanomechanical testing, we employed a floating zone sintering

od to grow coarse, equiaxial grains approximately 100µm in size. The specifics of the thermal processing

floating zone parameters can be found in Zhang et al. (2023) [33]. Following sintering, the bulk material

sectioned and polished in preparation for both microstructural analysis and mechanical testing. We

icated cuboidal pillars with side lengths ranging from 3000 nm to 100 nm, maintaining an aspect ratio

proximately 3:1. All cuboidal pillars were milled by using the FEI Helios G4 UX dual-beam focused

beam (FIB) milling system. Figure 2 (a) shows an overview of the pillar array that locates at the

of the bulk sample so that the pillar’s lateral surface can be seen under the in situ mechanical test.

orientation distribution of the grain is relatively homogeneous, characterized by Electron Backscatter

action (EBSD) in Figure 2 (b) and (c). The diffracted Kikuchi lines were analyzed by P4mm symmetry.

re 2 (d) shows the calculated Kikuchi pattern giving the orientation matrix

Ot =




0.40592 0.91297 0.04134

0.36104 −0.20175 0.91047

0.83957 −0.35465 −0.41151


 . (3)

last column of the orientation matrix indicates the pillar’s end-surface normal, while the first and

nd columns refer to the lateral surface frame upon a 45◦ rotation. Here the pillar orientation is close

he crystallographic direction [021̄]t, fairly away from any special symmetric axes associated with the

en octahedron. It is a sufficiently general orientation to study the interplay between twins and slips in

iO3. Nanopillars with size varying from 100 nm to 3000 nm were fabricated by FIB in the domain with

of-plane normal near [021̄]t, tested under uniaxial compression. The stress-strain curves were recorded

veal the superelasticity and size-dependent strength of BaTiO3 nanopillars.

Nanomechanical test for stress-induced phase transformation in BaTiO3

e used the FemtoTools Nanomechanical Testing system (model FTNMT03, Buchs ZH, Switzerland)

r FEI Quanta 250 FEG SEM to conduct the in situ uniaxial nanocompression tests. All loading

edures were carried out at a thermal stable environment at 25◦C under the displacement control mode

g a 5 µm diamond flat punch. The details of the in situ experimental setup can be found in Karami

l. [34, 35]. The loading direction was aligned with the orientation of all the pillars, i.e. N = [021̄]t =

1, 0.91,−0.411). Hereafter we use the cubic basis to present the tensors in all continuum mechanics

5
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(a) SEM Image

(d) Calculated Kikuchi lines

(c) Measured Kikuchi lines

[011]

[11!1]

[001]

e 2: Grain orientation characterized by EBSD. (a) The SEM image showing the grain morphology corresponding to (b) the

se Pole Figure (IPF) with Z-axis color map. (c) The measured Kikuchi lines by electron diffraction from the characterized

n. (d) Calculated Kikuchi lines by the P4mm symmetry with Z-axis approximately aligned with crystallographic direction

t.

lations. Precise adjustments were made to the positions between the punch and pillar using a 5-axis

stable stage to ensure optimal alignment. The maximum applied stress was properly chosen to induce

martensitic phase transformation without causing plastic deformation during this experiment. The

ron beam was positioned perpendicular to the lateral surface of the pillars for real-time monitoring the

rmation. In this experiment, we used the real-time imaging to ensure the compressive force does not

e visual slips in the pillars. The stress is computed as the force per reference cross-sectional area, and

n is calcuated as the relative depth change of the pillar with respect to the original length.

s seen from the stress-strain curves in Figure 3, the nanopillars from 130nm to 2800nm exhibit large

rmability and reversibility upon loading and unloading processes at a low stress level (< 400MPa).

1% recoverable strains were characterized by the nanocompression tests for all tested pillars. Compared

rdinary non-transforming ceramics, the measured recoverable strain of BaTiO3 is magnificent, which

ests that reversible martensitic transformation plays a role in the low-stress loading regime. We observed

ar plateau strain, also known as the superelastic strain in micropillars with sizes of 2800nm, 2300nm,

nm and 1500nm, marked as ϵt in Figure 3 showing an increasing the transformation stress. The

relastic strains for these micro-sized pillars were measured as 0.2 ∼ 0.3%. To verify whether measured

relastic strain is caused by the formation of transformation twins, we examined the crystallographic

6
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2800nm 2300nm 1900nm 1500nm 1100nm

900nm 300nm500nm700nm 130nm

Strain % Strain % Strain % Strain % Strain %

Stress (MPa)

Stress (MPa)

𝜖!

Figure 3: Stress-strain behaviors to reveal the superelasticity at sizes from 150nm to 3000nm.

tions for the twin laminate (U1,U2) as

QU2 = U1 + a⊗ n (4)

R (U1 + fa⊗ n) = I+ b⊗m, (5)

re n specifies the twinning plane and a determines the relative shear of variant U1 with respect to U2.

tion matrices Q and R ∈ SO(3) rotate the deformed configurations to fit the reference lattice, along the

t plane normal m and relative shear b ∈ R3 with twinning volume fraction f ∈ [0, 1]. Strictly speaking,

exact solutions of (f,b,m) are not attained for neither twin systems given by the lattice parameters of

iO3, as the middle eigenvalue µ2 of the tensor Cf = (U1 + fn⊗ a)(U1 + fa⊗n) is not 1 for any value

e twinning volume fraction f ∈ [0, 1], illustrated in Figure 4(a). The minimal distance between µ2 and

at the volume fraction f = 0.5, corresponding to |µ2(0.5) − 1| = 0.0065. Physically, this measures the

le principle eigenstrain of the phase transformation in the weak sense [36].

he characteristic equation

g(f) = det(Cf − I) = 0, (6)

not have real-value roots of f ∈ [0, 1] for the given U1 in (1). This is elaborated in Figure 4(b). Based

he geometrically nonlinear theory of martensite[36], the twins comprised of the pair of variants (U1,U2)

not exactly compatible with the tetragonal lattice. The volumetric measure of the misfit between the

ned martensite and austenite at the interface is estimated by |g(f)|. If the misfit can be compensated

calized plastic deformation, the formation of a psedudocompatible twin is possible. In this case, we can

an ansatz for n = (0, 0,−1) and a = η(−0.9999, 0, 0.0013) with shear η = 0.0053, which approximately

7
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f f

|𝜇! − 1|
g(f)

(a) (b)

e 4: (a) The measure of compatibility of twins. (b) The characteristic polynomial for the formation of pseudo-compatible

.

s the equation (5). We have min |g(f)| = |g(0.5)| = 3.34× 10−7 corresponding to the solution for

plane normal: m = (0.787, 0,−0.617) (7)

shear vector: b = (0.0067, 0, 0.0053) (8)

twinning volume fraction f = 0.5. It implies that the orthorhombic twin laminates are pseudo-

patible with austenite, corresponding to sufficiently small |g(0.5)|. Under the compression, the localized

tic strain field may drive the formation of pseudo-compatible twins due to the strain gradient. The

s-induced transformation strain can be directly calculated as a function of the loading direction N

ϵcal(N) =
√

N ·N+ 2(m ·N)(b ·N) + (b · b)(m ·N)2 −N ·N. (9)

ur experiment, N = (0.041, 0.91,−0.411), that gives the transformation strain ϵcal = −0.00254, which

es very well with the measured superelastic strains, denoted as ϵt in Figure 3 for pillars larger than 1µm.

t a moderate stress level (i.e. ∼ 400MPa), the stress-strain behaviors for nanopillars smaller than 1µm

me nonlinear without a clear superelastic plateau. The nonlinear elastic behavior as well as about 1%

verable strains were characterized for these small nanopillars. As the size of the pillar decreases, the

s hysteresis gradually diminishes, and the superelastic feature becomes less pronounced.

Size dependent strength of BaTiO3 nanopillars

e increased the maximum compression stress beyond 400MPa to observe the plastic deformation and

ure in BaTiO3 pillars with sizes varying from 100nm to 3000nm. We conducted a series of nanomechan-

compression tests under the displacement control. An escalating series of maximum displacements were

ematically applied to load and unload the nanopillars until the point of fracture. To ensure a quasi-static

anical response, all tests were carried out at the strain rate of 0.1%/s. SEM figures of post-mortem

pillars were taken to reveal the fracture microstructure.

8
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e 5: (a) Stress-strain curves for typical bulk sized pillars. (b) Stress-strain curves for nanopillars near and below the

al size. (c) The fracture microstructure of BaTiO3 nanopillars from 100nm to 3000nm sizes.

he yield strength, denoted as σy, is characterized as the flow stress right before the fracture point

sted nanopillars, as seen in Figure 5(a). Here a representative micron-sized pillar (2800nm) yields at

Pa with 2% overall strains. As the size reduces, there exist a clear trend of strengthening effect among

rs with sizes of 2800nm, 1100nm, 900nm and 500nm. In contrast, the strengthening effect was saturated

anopillars with sizes of 370nm, 330nm, 250nm, 174nm respectively. Figure 5(b) shows that these small

pillars yield at around 8.5GPa stress with 7% to 10% overall strains. The microstructure at the yield

t of tested nanopillars were presented in Figure 5(c). For large pillars (i.e. > 1µm), both slips and twins

seen on lateral surfaces, while only slips were observed in small pillars (i.e. < 1µm).

iscussion

Scaling law, twins and slips in BaTiO3 pillars over 330nm

e have systematically tested over 20 nanopillars with size homogenerously distributed in a range from

nm to 100nm. Figure 6 shows the size dependent yield strength with a power law fitting. Unlike the

9
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cal presence of size effect reported in metals and alloys [27, 28], the strength of BaTiO3 nanopillars does

increase as further reduction of size below 330nm. All nanopillars with size smaller than 330nm exhibit

ame yield strength, around 9GPa, that approaches to the theoretical strength of BaTiO3 [11], estimated

ne tenth of the elastic modulus based on the Griffith theory of fracture[37, 38]. Our experiment revealed

existence of a critical size at 330nm in BaTiO3 phase-transforming ferroelectric oxide. Above it, the

effect plays an important role. Below it, the material uniformly reaches its theoretical strength. Similar

omenon was reported in molybdenum (a bcc crystal) that the theoretical strength, i.e. approximately

a, was achieved in nanopillars with sizes 360nm, 500nm, 750nm and 1000nm under the uniaxial com-

sion tests.[39] Noted that 330nm is not a considerably small length scale. The grains with 300 ∼ 400nm

in polycrystals can be easily achieved by ordinary material synthesis techniques.

St
re

ng
th

 (G
Pa

)

Pillar width, s (nm)

Theoretical Strength

𝜎! = 𝜎" 1 +
ℓ
𝑠

e 6: Size dependent yield strength of BaTiO3 pillars from 100nm to 3000nm. The red dashed line marks the theoretical

gth predicted by E/10, where E is the elastic modulus of BaTiO3. σ0 is the size-independent yield stress and ℓ is the

rial length parameter related to the strain-gradient hardening effect.

henomenologically, the phase-transforming material also follows a trend that gets stronger as the size

ces [40]. The size effect is often interpreted as the starving of defects in small scales [28] and geometrically

ssity of defect mobility [26, 22]. For non-transforming metallic single crystal, plastic strain hardening

common strengthening mechanism, but not responsible for the size effect. Mechanism-based models

ied the size effect based on the strain-gradient theories [22, 41], considering the geometrically necessary

cations (ρG) as a consequence of the gradient field of plastic strain (γ), symbolically presented as

∼ 1
b |

∂γ
∂x | where b denotes the Burgers vector along x-axis. A general contribution of plastic strain

ient to the free energy density (ψg) follows a power law as ψg ∼ |ℓ∂γ∂x |p+1 where ℓ is a constitutive

th parameter. The exponent p is an integer, depending on the order of nonlocal energy growth [41].

a single crystal bending test, the length parameter represents the mean spacing between geometrically

ssary dislocations. In other mechanical tests, this parameter is related to an internal material length

responsible for size-dependent hardening effect. Strain gradient models predicted the yielding condition

an effective flow stress

σy = σ0

[
1 +

(
ℓ

s

)α]
, (10)

re s denotes the effective size measure of plastic deformation domain, σ0 is the size-independent yield

10
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s and α is the scaling exponent. Under the assumptions of rigid-plastic and linear deformation, the

ng exponent α with a value of 1 is found to be a non-trivial minimizer of the free energy [41]. Contrarily,

rimental data from common metals and alloys [42, 43] typically show a scaling exponent close to 0.5,

enomenon known as the Hall-Petch rule. In the case of certain body-centered cubic (bcc) and face-

ered cubic (fcc) metals, the experimental scaling exponent ranges between 0.2 and 0.7 [25, 26, 27, 28].

ar, there is no experimental evidence that indicates the scaling exponent, α asymptotically converging

n exact value of 1.

(b) f = 0.5

110 [1$11]

𝑛 = (00%1)
𝑚 = (0.78,0 − 0.62)

11$1 [101]

n
m

[02%1]

𝜖cal

(c) [02$1]

twin

slip1

slip2

(a) mslip1 = 0.5 (d) mslip2 = 0.21

e 7: Microstructure of the post deformed micro pillar for micropillar. (a) Theoretical calculation of the slip system 1

[11̄1] corresponding to the maximum Schmid factor mslip1 = 0.5. (b) Stereographic contours of transformation strain ϵcal.

he post-mortem image of the 2800nm micropillar after fracture. (d) Theoretical calculation of the twin laminates within

lip band (111̄)[101] corresponding to a smaller Schmid factor mslip2 = 0.21.

e use the model in (10) to fit the experimental data for pillar sizes greater than the critical size

nm), shown in Figure 6. Strikingly, we obtained the scaling exponent α = 0.999993 (i.e. identical to 1)

σ0 = 1.3662GPa and material length parameter ℓ = 1670.37nm. Figure 6 shows that the theory given

0) with α = 1 agrees very well with the size-dependent yield strength of BaTiO3 with sizes greater than

m. We use Nix and Gao’s model [22] to estimate the Burgers vector of the geometrically necessary

cations as b ≈ ℓ
(
σ0

G

)2
= 6.36Å for shear modulus G ∼ 70GPa [44]. With given lattice parameters of the

gonal BaTiO3, the estimated magnitude of Burgers vector match the slip along [11̄1] on (101) plane very

The Schmid factor of (110)[11̄1] system with respect to the loading direction N = (0.041, 0.91,−0.411)

lculated as mslip1 = 0.5. Figure 7(a) shows the calculated microstructure of the surface step due to

)[11̄1] slip, confirmed by the observed surface microstructure in the post-mortem image of the 2800nm

opillar as seen in Figure 7(c). Besides the activation of slip system with a high Schmid factor, we

rved a wide surface step in the middle part of the same cuboidal micropillar, which suggests a different

rmation mechanism.

he stereographic contours of the orientation-dependent transformation strain, denoted as ϵcal, were

puted by (9), illustrated in Figure 7(b). The pillar orientation, characterized as N ∼ [021̄], corresponds

transformation strain ranging from 0.2% to 0.4%. The strain prior to the first burst of the 2800nm

11
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r, as measured in Figure 5(a), allows us to estimate a plastic strain of approximately 1.6 ∼ 1.8% at a

s level of 2.5GPa. A comparison with the surface steps, captured in the post-mortem image of plastically

rmed micropillar, leads us to hypothesize the formation of a pseudo-compatible twin within a plastic

ain associated with a distinct slip system. Among the possible slip systems discussed in section 2 and

lotted in Figure 1, we identify the (111̄)[101] slip system that agrees with the experimental observation

igure 7(c). Although (111̄)[101] slip corresponds to a low Schmid factor (mslip2 = 0.21), it is facilitated

he formation of pseudocompatible twins during compression-induced transformation.

Size-independency of BaTiO3 nanopillars smaller than critical size

t 330nm, the yield strength of BaTiO3 nanopillar reaches a saturation value, i.e. the theoretical

gth, near 9GPa. The size effect is no longer observed in the nanopillars smaller than 330nm. The

s-strain curves of nanopillars with sizes from 100nm to 300nm are shown in Figure 5(b), exhibiting

10% plastic strains. As a comparison, the β–titanium alloy fractures with 8% strain under 1.4GPa

pressive stress [45]. Stainless steels have even less plastic strains.

1"10 11"1 , mslip = 0.484 11"1 1"10 , mslip = 0.484

1"11 110 , mslip = 0.5110 1"11 , mslip = 0.5

200nm

270nm

150nm

150nm

250nm

200nm

(a) (b)

e 8: (a) Microstructure of plastically deformed nanopillars with a single slip system and duplex slip systems. (b) Theo-

l calculations of possible slip systems for nanopillars in the size-independent regime.

ore size-independent experimental data is verified in Figure 6, plateaued at the theoretical strength of

iO3. Figure 8(a) shows the post-mortem image of the nanopillars below the critical size. We did not

rve any twins or twin-like morphology in these nanopillars, indicating that the stress-induced transfor-

ion is suppressed at this scale. Only a single slip or duplex slips were observed, corresponding to the

systems with high Schmid factors as illustrated in Figure 8(b). Note that these slip systems consist of

conventional close-packed planes and directions of body-center and face-center cubic lattices, which are

ly reported in BaTiO3 ferroelectric materials.

12
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recent strain-gradient theory [41] considers both linear and superlinear growth of nonlocal strain-

ient energy. Direct energy minimization yields a scaling exponent α = 1 for ideal plasticity with linear

gy growth, while size dependency of strain-gradient energy disappears for superlinear growth. The

independent strength of BaTiO3 nanopillars (< 330nm) suggests that plastic deformation, reaching the

retical strength, is driven by superlinear growth of nonlocal strain-gradient energy. The multi-slips of

)[111̄], (11̄1)[110], (110)[11̄1], (11̄1)[110] and their crystallographic equivalencies, are completely inert to

tic hardening until the external stress reaching the theoretical strength limit. However, the critical size

0nm can not be quantitatively related to the nonlocal strain gradient theory as the statistically stored

cation density is not available.

310 nm

Barium titanates ferroelectrics [42-50]
Lead-based piezoelectrics [51, 52]
LaNbO4 ceramics [53]

No 
twins

Grain size (nm)

Twin width (nm)

e 9: Size correlation between average twin width and mean grain size of Barium titanates, lead-based piezoelectrics and

O4 ceramics reported in literature.

s shown in Figure 9, we summarized the size correlation between the average twin width and mean

size of Barium titanates [46, 47, 48, 49, 50, 51, 52, 53, 54], Lead-based piezoelectrics [55, 56], and

bO4 ceramics [57]. The plotted twin width was determined directly from the microstructure images

rted in the literature on polycrystalline ferroelectrics. The measurements are not influenced by internal

n or orientation of the grains. We calculated the twin width by taking the average of the widths of many

s observed across different grains. Similarly, the grain size was determined by averaging the sizes of the

s visible in the micrographs. Twins can be observed in the grain with size larger than 310nm. The

gets finer as the grain size reduces. In phase-transforming ferroelectrics, we revealed that a universal

cal grain size exists, below which no twins were observed in experiments. This critical size is consistent

the critical size we discovered in Figure 6.

onclusion

n this paper, we systematically studied the stress-induced martensitic transformation (i.e. superelastc-

and plastic deformation in BaTiO3 nanopillars with size varying from 3000nm to 100nm. At low-level
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